Search results for "Fredholm determinants"
showing 10 items of 13 documents
Families of rational solutions to the KPI equation of order 7 depending on 12 parameters
2017
International audience; We construct in this paper, rational solutions as a quotient of two determinants of order 2N = 14 and we obtain what we call solutions of order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 112 in x, y and t depending on 12 parameters. The maximum of modulus of these solutions at order 7 is equal to 2(2N + 1)2= 450. We make the study of the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow, triangle and ring structures are obtained.
Rational solutions to the KPI equation of order 7 depending on 12 parameters
2018
We construct in this paper, rational solutions as a quotient of two determinants of order 2N = 14 and we obtain what we call solutions of order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 112 in x, y and t depending on 12 parameters. The maximum of modulus of these solutions at order 7 is equal to 2(2N + 1) 2 = 450. We make the study of the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow, triangle and ring structures are obtained.
Deformations of third order Peregrine breather solutions of the NLS equation with four parameters
2013
In this paper, we give new solutions of the focusing NLS equation as a quotient of two determinants. This formulation gives in the case of the order 3, new deformations of the Peregrine breather with four parameters. This gives a very efficient procedure to construct families of quasi-rational solutions of the NLS equation and to describe the apparition of multi rogue waves. With this method, we construct the analytical expressions of deformations of the Peregrine breather of order N=3 depending on $4$ real parameters and plot different types of rogue waves.
Degenerate determinant representation of solutions of the NLS equation, higher Peregrine breathers and multi-rogue waves.
2012
We present a new representation of solutions of the focusing NLS equation as a quotient of two determinants. This work is based on a recent paper in which we have constructed a multi-parametric family of this equation in terms of wronskians. This formulation was written in terms of a limit involving a parameter. Here we give a very compact formulation without presence of a limit. This is a completely new result which gives a very efficient procedure to construct families of quasi-rational solutions of the NLS equation. With this method, we construct Peregrine breathers of orders N=4 to 7 and multi-rogue waves associated by deformation of parameters.
Quasi-rational solutions of the NLS equation and rogue waves
2010
We degenerate solutions of the NLS equation from the general formulation in terms of theta functions to get quasi-rational solutions of NLS equations. For this we establish a link between Fredholm determinants and Wronskians. We give solutions of the NLS equation as a quotient of two wronskian determinants. In the limit when some parameter goes to $0$, we recover Akhmediev's solutions given recently It gives a new approach to get the well known rogue waves.
Solutions to the NLS equation : differential relations and their different representations
2020
Solutions to the focusing nonlinear Schrödinger equation (NLS) of order N depending on 2N − 2 real parameters in terms of wronskians and Fredholm determinants are given. These solutions give families of quasirational solutions to the NLS equation denoted by vN and have been explicitly constructed until order N = 13. These solutions appear as deformations of the Peregrine breather PN as they can be obtained when all parameters are equal to 0. These quasi rational solutions can be expressed as a quotient of two polynomials of degree N (N + 1) in the variables x and t and the maximum of the modulus of the Peregrine breather of order N is equal to 2N + 1. Here we give some relations between sol…
Fredholm representations of solutions to the KPI equation, their wronkian versions and rogue waves
2016
We construct solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants. We deduce solutions written as a quotient of wronskians of order 2N. These solutions called solutions of order N depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polynomials of degree 2N (N + 1) in x, y and t depending on 2N − 2 parameters. So we get with this method an infinite hierarchy of solutions to the KPI equation.
Families of solutions to the CKP equation with multi-parameters
2020
We construct solutions to the CKP (cylindrical Kadomtsev-Petviashvili)) equation in terms of Fredholm determinants. We deduce solutions written as a quotient of wronskians of order 2N. These solutions are called solutions of order N ; they depend on 2N − 1 parameters. They can be written as a quotient of 2 polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N − 2 parameters. We explicitly construct the expressions up to order 5 and we study the patterns of their modulus in plane (x, y) and their evolution according to time and parameters.
From Fredholm and Wronskian representations to rational solutions to the KPI equation depending on 2N − 2 parameters
2017
International audience; We have already constructed solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants and wronskians of order 2N. These solutions have been called solutions of order N and they depend on 2N −1 parameters. We construct here N-order rational solutions. We prove that they can be written as a quotient of 2 polynomials of degree 2N(N +1) in x, y and t depending on 2N−2 parameters. We explicitly construct the expressions of the rational solutions of order 4 depending on 6 real parameters and we study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, b1, b2, b3.
6-th order rational solutions to the KPI equation depending on 10 parameters
2017
International audience; Here we constuct rational solutions of order 6 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 84 in x, y and t depending on 10 parameters. We verify that the maximum of modulus of these solutions at order 6 is equal to 2(2N + 1)2 = 338. We study the patterns of their modulus in the plane (x, y) and their evolution according time and parameters a1, a2, a3, a4, a5, b1, b2, b3, b4, b5. When these parameters grow, triangle and rings structures are obtained.